ib-rauch.de
Bauratgeber ::  Bücher  |  Publikation  |  Fragen  |  Impressum  |  Datenschutz

7. Verhaltensweise des Betons unter Einwirkung von Mikroorganismen

7.1. Allgemeines zur mikrobiologischen Korrosion

Es werden oft Korrosionserscheinungen festgestellt, die nicht sofort auf das Wirken von Mikroorganismen zurückzuführen sind. Bakterien, Pilze, Algen, Flechten oder Urtierchen können fast alle Naturprodukte und Industrieerzeugnisse angreifen, schädigen oder zersetzen. Die dabei gewonnene Energie wird zum Zellenaufbau benötigt, ebenso ein Teil der umgewandelten chemischen Verbindungen oder Elemente. Diese Prozesse sind aber je nach Mikrobenart sehr unterschiedlich. Es werden Holz, Zellstoff, Papier, Leder, Gummi, Textilien, Wolle, Öle, Paraffine, Wachse, Treib- und Schmierstoffe, Knochen, Glas, Steine, Baustoffe, Leime, Anstrichstoffe, Bitumen, Kunststoffe und Metalle angegriffen. Bestimmte Mikroorganismen (Bakterien, Pilze, ...) siedeln sich nur an speziellen Orten an. Diese benötigen günstige Lebensbedingungen, wie einen bestimmten pH-Bereich, bestimmte Temperatur und aerobes (Luftsauerstoff atmend) oder anerobes Milieu. Sind diese Bedingungen gegeben, so kann ein bestimmter Stoff angegriffen werden, der als Lebensgrundlage dient. Donnendorf konnte in [/10/,103] folgendes feststellen: "Die Mikroorganismen können den Werkstoff direkt oder indirekt schädigen. Ein direkter Angriff erfolgt vor allem durch rein mechanische Einwirkung auf das Metall, aber auch durch Abdeckung gewisser Oberflächenbereiche und damit Bildung von Belüftungs- bzw. Konzentrationselementen. Eine indirekte Einwirkung ist durch Stoffwechsel- und Zerfallsprodukte von Mikroorganismen möglich. Es können aggressive Gase, Säuren, ..." gebildet werden. Ab den 70/80iger Jahren wurde gerade dieser Korrosionserscheinung mehr Aufmerksamkeit geschenkt. Es wurde das Wissenschaftsgebiet "Organismen und Werkstoff" geschaffen, welches sich mit den Erscheinungen und Problemen, die durch den Einfluss von Lebewesen auf Werkstoffe entstehen, beschäftigt.

Die mikrobiologische Industrie erlangt in der Zukunft immer mehr Bedeutung. Vorhandene Anlagen werden rekonstruiert oder erweitert. Es werden auch völlig neue Anlagen und Betriebe errichtet. Diese haben mit chemischen Anlagen darin eine gewisse Ähnlichkeit, da die für die Prozessdurchführung (Fermentation) benötigten Nährlösungen aus verschiedenen Chemikalien und Substraten (z. B. Alkanole, Molke, Sulfate, usw.) zusammengesetzt sind. Die biologischen Prozesse finden vorwiegend bei der Erzeugung von Futtereiweißstoffen, der Gewinnung oder Reinigung von Eisen, Cu, Mangan, ... aus geringwertigen Erzen, in der Lebensmittelindustrie z. B. Käserei, Brauerei ... und in der Pharmazie unter anderem die Penicillinherstellung, u.a. ihre Anwendung.

Bei der Züchtung von Mikroorganismen können durch günstigere Bedingungen auch außerhalb der Fermentationsanlagen hohe Konzentrationen an Keimen auftreten. Dabei können die Mikroorganismen in Verbindung mit Chemikalien, die zwangsläufig auftreten, Korrosionsschäden an Betonbauteilen verursachen. Solche Schäden lassen sich nicht sofort, sondern erst im Verlauf einer längeren Zeit erkennen. So wurde der Betonfußboden der Fermentationsanlage in Seelow in einem Jahr so zerstört, dass er mit einer Schutzschicht versehen werden musste. In den nachfolgenden Punkten wird auf die Korrosion durch Mikroorganismen hingewiesen. Dabei wird aber auch auf solche Werkstoffe, wie Bitumina, Anstriche-, Kunststoffe und Glas eingegangen, die im Säureschutz Anwendung finden aber durch bestimmte Mikroorganismen besiedelt sowie mikrobiologisch abgebaut werden können.

7.2. Die Korrosion von mineralischen Werkstoffen durch Mikroorganismen

Die Korrosion durch Mikroorganismen kann, ebenso wie die bisher beschriebenen Arten der Korrosion, unter verschiedenen Bedingungen verlaufen. "Kalkstein kann neben natürlich vorkommenden mineralischen Baustoffen durch Bakterien geschädigt werden. Bei dem Zweiphasenwerkstoff Beton wird sowohl der Zementstein als auch der Zuschlag, jedoch auf unterschiedliche Weise, durch die Stoffwechseltätigkeit von Mikroorganismen angegriffen. Die große innere Oberfläche des Zementsteins, die z.T. bis zu 200m2/g beträgt, macht sich in diesem Zusammenhang besonders bemerkbar." [/11/,11] Eine Art der Korrosion des Betons erfolgt durch den SO2-Gehalt der Atmosphäre oder den Sulfatgehalt des Wassers. Die organischen und anorganischen Schwefelverbindungen werden unter aneroben oder aeroben Bedingungen zur Mineralisierung zu Sulfat oder zur H2S-Bildung angeregt.

Die Korrosion durch Mikroorganismen "... geschieht vor allem durch die Tätigkeit der acidophilen Thiobacillus-Arten, die verschiedene Schwefelverbindungen zu Schwefelsäure oxidieren. Thibbacillus concretivorus entwickelt sich optimal bei pH 2 bis 4 und wächst noch bei pH 1. Durch seine starke Säurebildung vermag dieser Organismus aus Beton erstellte Abwasserleitungen, Kläranlagen, Hafenbauten, Brückenpfeiler usw. zu zerstören und dadurch große Schäden hervorzurufen. Eine ähnliche Rolle können die übrigen acidophilen Thiobacillen, wie Th. thiooxidans und Th. ferrooxidans, spielen. Sie alle bewirken auch die Korrosion von Metallen und anderen säureempfindlichen Materialien." [/12/,181]

Ebenso können durch nitrofizierende Bakterien Säuren gebildet werden. Die Schwefel- und salpetrige Säure bewirkt eine Senkung des pH-Wertes, was gleichzeitig die Ansiedlung anderer Kulturen ermöglicht.

"Ein Weg des Mineralabbaus, besonders von Beton, ist die mikrobiologische Oxidation des in der Luft und im Regenwasser vorhandenen Ammoniaks über Nitrit und Nitrat; dabei wird Kalziumkarbonat umgewandelt, das pulverförmig unter einer harten Kruste zurückbleiben kann. ... Es gibt aber auch Zerfall von Kalkstein, bei dem der pulvrige Rückstand im Zusammenhang mit mikrobiologischer Oxidation von SO2 Kalziumsulfat enthält." [/11/,12]
Solche Schäden treten dort auf, wo viel Feuchtigkeit, z. B. in Kühltürmen, Abwasserschächten und Ställen, vorkommt.

7.3. Die Korrosion von Eisen durch Mikroorganismen

"Als Weg der bakteriellen Korrosion kommen 3 Wege in Betracht. Die Kinetik von Elektroden-Reaktionen wird nach einer Theorie des Korrosionsmechanismus der Sulfatreduzierer unmittelbar durch Lebensprozesse der Bakterien beeinflusst; oder die Bakterien, beispielsweise Kohlenhydratabbauer, produzieren korrosive Substanzen wie anorganische und organische Säuren; oder Bakterien können an der Bildung von Elementen beteiligt sein, die durch unterschiedlich belüftete Bereiche zustande kommen. ... Lochfraßerscheinungen, d. h. Korrosion von Stahl an Schiffsrümpfen und Hafenbauten haben besonders an Stellen ohne Sauerstoffzutritt, wie z. B. unter Bewuchs, zu der Vermutung eines Einflusses anaerober Bakterien auf die Eisenkorrosion geführt. Versuche mit an dieser Stelle gefundenen sulfatreduzierenden Bakterien Desulfovibrio desulfuricans ergaben im Labor einen langsamen Eisenangriff." [/11/,13,12]

In einer anderen Literaturquelle wird die anerobe Korrosion wie folgt erläutert:

"Eine anerobe Korrosion wird häufig durch Sulfatreduzierer - vor allem Desulfovibrio desulfuricans - bewirkt. Der von diesen erzeugte Schwefelwasserstoff kann direkt mit Eisen reagieren. Es entstehen Korrosionszellen zwischen Eisensulfid und metallischem Eisen. Reduzierende Zonen von metallischem Eisen wirken anodisch gegenüber anderen Bereichen, die sich in Kontakt mit sauerstoffhaltigem Wasser befinden, sodass es zur Lösung des Eisens kommt." [/12/,180]

Der Bewuchs (sog. Fouling) kann für die erforderliche Herabsetzung des Redoxpotentials sorgen, in dem er eine dichte Schleimschicht auf der im Wasser befindlichen Oberfläche des Bauteils bildet.

"Durch den Abbau von Eiweißstoffen werden Ammoniak und H2S freigesetzt und es kommt zu einer starken Sauerstoffzehrung, sodass die Voraussetzung für eine Desulfurikation Sulfatreduzierer (Desulfovibrio desulfuricans) günstig sind. Die heterotrope Aufwuchsflora bewirkt aber auch direkt durch die Abgabe von CO2 und zum Teil auch von H2 eine starke Korrosion. Sie kann die von den Sulfatreduzierern verursachte Korrosion noch erheblich übertreffen (Frenzel 1966). Neben Eisen korrodieren auf diese Weise auch andere Metalle, vor allem Aluminium."[/12/,181]

Die Bakterienkultur Sorovibrio desulfuricans, die im Erdboden mit wenig gelöstem Sauerstoff vorkommen kann, kann im pH-Bereich 5,5 bis 8,5 eine abnorm hohe Korrosionsgeschwindigkeit bewirken.

"Sulfat reduzierende Bakterien reduzieren in Gegenwart von Wasserstoff oder organischen Stoffen sehr leicht anorganische Sulfate zu Sulfiden. Diesen Prozess begünstigt die Gegenwart einer Eisenoberfläche. Die Reduktion beschleunigende Wirkung des Eisens beruht wahrscheinlich darauf, dass das Eisen den Wasserstoff abgibt, der normalerweise an der Metalloberfläche adsorbiert ist, und der die Bakterien bei der Reduktion des Sulfats unterstützt. Für jedes verbrauchtes Äquivalent Wasserstoffatome geht ein Äquivalent Eisen-(II)-Ionen in Lösung und bildet Rost und FeS. Daher wirken die Bakterien wahrscheinlich hauptsächlich als Depolarisatoren. Die Reaktionsfolge kann folgendermaßen formuliert werden:

Anode:      4 Fe → 4 Fe2+ + 8e
Kathode:   8 H2O → 8 H (an Fe adsorb.) + 8 OH1- - 8e
                8 H(ad.) + Na2SO4 Bakterien → 4 H2O + Na2S
                Na2S + 2 H2CO3 → 2 NaHCO3 + H2S

Gesamtreaktion:
               4 Fe + 2 H2O + Na2SO4 + 2 H2CO3 → 3 Fe(OH)2 + FeS + 2 NaHCO3

Wie man daraus erkennt, werden Eisenhydroxid und Eisensulfid im Molverhältnis 3:1 gebildet. ... Die Analyse eines Rostes, der durch die aktive Mitwirkung der Sulfate reduzierenden Bakterien entstanden ist, zeigt annähernd das gleiche Verhältnis von Oxid und Sulfid." [/13/,99]

Die Aktivität der Bakterien kann durch Belüftung des Wassers gehemmt werden, da sie in Gegenwart von gelöstem Sauerstoff nicht lebensfähig sind. Weiterhin kann unter anderem durch anorganische Selenate die Ausbreitung dieser Bakterien gehemmt werden.

7.4. Die Korrosion von polymeren Werkstoffen durch Mikroorganismen

Selbst an Kunststoffen, Kautschuk, Anstrichstoffen und Bitumina wurden Korrosionserscheinungen festgestellt. Lindner [/14/,270] beschreibt Folgendes:
"Stockflecken am Gummi sind keine Seltenheit. An der Gummizerstörung beteiligen sich, falls etwas Feuchtigkeit vorhanden ist, vermutlich Mykobakterien, Aktinomyzeten und Schimmelpilze. Bestimmte Schwefelbakterien wandeln den im Gummi enthaltenen Schwefel in Schwefelsäure um."

Nach Zobell und Beckwith wird das Gummi hauptsächlich durch Angehörige der Gattung Pseudomonase, Micrococcus, Bacillus, Nocardia und Micromonspora abgebaut. Dabei unterliegen einige Sorten des synthetischen Gummis rascher der bakteriellen Zerstörung als natürlicher Gummi.[15]

Überall können korrosive Schäden durch Mikroorganismen festgestellt werden, vor allem auch an Bitumina und Anstrichstoffen. Dies dürfte von Bedeutung sein, da diese Materialien unter anderem als Schutzschicht auf Beton, z. B. beim Säureschutz, Anwendung finden.
"Über das Verhalten von Kunststoffen und Kautschuk gegenüber Mikroorganismen sind auf Grund zahlreicher praktischer Erfahrungen und Laboruntersuchungen einige allgemeine Feststellungen möglich." [/11/,6]

Rein synthetische Polymere wie PVC, Polyäthylen, Polystyrol und andere sind widerstandsfähig gegen Mikroorganismen. Dahingegen werden bestimmte Polyamide, Polyester und Polyurethane sowie Natur- und Synthesekautschuk in begrenztem Maße angegriffen.

"Die wichtigsten Eigenschaftsveränderungen von Kunststoffen und Kautschuken unter Einwirkung von Mikroorganismen auf das Polymer oder darin enthaltene Zusatzstoffe sind Masse- und Festigkeitsverluste oder Versprödung." [/11/,8]
Es können aber auch noch andere Schadensmöglichkeiten auftreten.
"Zusätzlich zu reinen synthetischen Polymeren und Kautschuk wie Weichmacher, Füllstoffe, Stabilisatoren, Emulgatoren können anfällig sein." [/11/,7]

So wird angenommen, dass die Ester-Weichmacher durch Enzyme zu kurzkettigen Säuren und Alkoholen abgebaut und diese als C-Quelle von den Mikroorganismen verwendet werden.

"Bitumina als Straßenbeläge und zu Dichtungsmassen können von Mikroorganismen besiedelt und chemisch angegriffen werden. In feuchter Umgebung, besonders wenn es sich um Abwasserleitungen mit reicher Bakterienflora handelt, entstehen Schäden durch Bakterien. Auch einzelne Schimmelpilzarten verwerten Bitumina."[/11/,9]
Da diese Stoffe als Dichtungsmassen verwendet werden, kommt ihrem technischen Schutz, unter gefährdeten Bedingungen, besondere Bedeutung zu.

7.5. Die Bedeutung des pH-Wertes für die Beständigkeit des Stahlbetons

In den vorangegangenen Abschnitten wurde der pH-Wert unter verschiedenen Gesichtspunkten angesprochen. Eine kleine Übersicht soll das folgende Bild darstellen:

Bild pH-Bereiche Beton und Bakterien

Im Allgemeinen kann aus der Übersicht entnommen werden, dass ein poröser Beton anfälliger gegenüber Bakterien ist als ein dichter. Die Bakterien haben einen recht großen "pH-Lebensraum", wo unter anderem die schwefelabbauenden Kulturen wiederum die Lebensmöglichkeit für andere Bakterienstämme geben können. Unter bestimmten Gesichtspunkten könnte bei einer Besiedlung des Betons mit Kulturen, deren "pH-Lebensraum" bei etwa 4 liegt, durch einen "pH-Schock" deren Wachstum gestört bzw. abgetötet werden. Eine weitere Möglichkeit wäre die Schaffung einer Pufferzone bei einem pH-Wert von 12,6, um somit den Beton gegenüber Säuren und Mikroorganismen resistenter zu machen.

Eine vom pH-Wert unabhängige Möglichkeit wäre der sinnvolle und gezielte Einsatz von Bakteriophagen. Die Anwendung der Viren ist nur bedingt möglich, könnte aber sehr wirkungsvoll sein. Die Bakterienviren können nur ihre speziellen Wirtsbakterien infizieren und zerstören. Diese Variante würde einen einfachen und relativ langen Korrosionsschutz bewirken, da die Viren sehr widerstandsfähig sind und somit eine Ansiedlung der korrosionsschädigenden Bakterienkulturen sehr ungünstig ist.

7.6. Schlussbetrachtung

Nicht so einfach kann die Korrosion des Betons durch Mikroorganismen erläutert werden, da es doch eine Reihe von wesentlichen Unterschieden gibt. Hier werden ebenfalls die chemischen Verbindungen zu Energiegewinnung genutzt, die für die Stoffwechselprozesse der Mikroorganismen unerlässlich sind. Diese Reaktion verläuft jedoch unter anderen Bedingungen, zum Teil über Zwischenstufen entsprechend der Stoffkreisläufe (z. B. von Schwefel, Stickstoff, ...). Hier können ganz unterschiedliche Reaktionen wie z. B. Dinitrifikation oder Nitratammonifikation stattfinden, die vom jeweiligen Milieu, in dem die Mikrobe lebt, abhängt. Es werden bestimmte Lebensbedingungen wie ein bestimmter pH-Bereich, Temperatur, ein aerobes oder anaerobes Milieu u.a. benötigt, um ein optimales Wachstum zu erreichen.

Aus den kurz erläuterten Tatsachen geht hervor, dass Mikroorganismen nicht überall ernsthaft korrosiv wirksam werden können. Treten sie aber an bestimmten Orten auf, an denen sie günstige Bedingungen vorfinden, so können sie zur ernsten Gefahr für den Beton und andere Werkstoffe werden. Hier ist jedoch zu beachten, das geht auch aus den vorangegangenen Abschnitten hervor, dass nicht eine Mikrobe irgend etwas mikrobiologisch abbaut, sondern bestimmte chemische Verbindungen bevorzugt. Ein wesentlicher Fakt ist noch zu erwähnen, dass bestimmte Kulturen durch ihre Anwesenheit den pH-Wert verändern oder durch Abbaurückstände andere Arten verwendbare Substanzen zur Verfügung stellen, die dann die biochemische Zersetzung weiter fortführen.

Gerade diese Tatsache ist von großer Bedeutung für den Korrosionsschutz des Betons. Viele Schutzschichten, die im Säureschutzbau Anwendung finden, die einen wirksamen Schutz vor Sulfat, Phosphat, Aminoverbindungen aufweisen, können durch Mikroorganismen angegriffen und zerstört werden. Das trifft für Bitumina, Gummi, Kunst- und Anstichstoffe und vieles mehr zu.

Mikroorganismen werden meist in der Vereinigung mit chemischen Verbindungen auftreten, was in den Betrieben der mikrobiologischen Industrie zwangsläufig alltäglich ist. Hier reichen die üblichen Betonschutzmaßnahmen nicht aus, da sie zwar einen wirksamen Schutz vor Säuren und anderen korrosiven chemischen Verbindungen bieten, aber durch Mikroorganismen zersetzt werden können. Danach ist die Schutzwirkung verloren und die Korrosion des Betons kann durch die aggressiven chemischen Verbindungen und die Mikroorganismen erfolgen.


Seite 1  2  3  4  5  6

Technische Wertminderung durch biologische Schäden in Gebäuden und an Bauteilen
14.09.2001 - Peter Rauch -


 © Bauratgeber  |  Marktplatz der Bauideen  |  Sanierungskosten  |  Bauökonomie   |  Datenschutzerklärung  |  Impressum | 08/2018