ib-rauch.de
Bauratgeber ::  Publikation  |  Fragen  |  Impressum  |  Datenschutz
Korrosion von Beton und Stahlbeton durch chemische Verbindungen und Mikroorganismen 29.9.1984 - Dipl.-Ing.oec. Peter Rauch -

3.4. Die Korrosion der Bewehrung

" Im allgemeinen unterliegt Stahl im Beton keiner Korrosion, da in feuchtem Beton der Stahl dem Angriff der Porenflüssigkeit ausgesetzt ist, bei der es sich normalerweise um eine gesättigte Kalziumhydroxidlösung handelt, die durch Hydration von Kalzium-Silikaten und -Aluminaten entstanden ist und deren pH-Wert bei 12,6 liegt." /10/
Bei einer ausreichenden Gas- und Wasserdurchlässigkeit des Betons durch Fehlstellen, Poren und Risse wird kohlendioxidhaltige Luft oder schadstoffhaltiges Wasser ungehindert an den Stahl heran diffundiert. Das gelöste Kalziumhydroxid karbonatisiert. Damit sinkt der pH-Wert des Porenwassers auf 9 bis 10 ab. Der Korrosionsschutz, der durch den hohen pH-Wert (alkalischer Schutz) und durch die Passivierung des Stahls (durch Silikat) bestand, geht verloren. Die Stärke der Betonschicht soll 20 bis 25 mm betragen. Von Bedeutung sind die Zementsorten und das Mischungsverhältnis. Soll die Dichte des Betons erhöht werden, so wird ein Puzzolanzusatz zum Zement (z.B. Portlandzementklinker und Flugasche) gegeben. Dadurch gibt es weniger poröse Stellen im Beton aber die Alkalität sinkt durch den SiO2-Zusatz, was die Korrosion begünstigt. Chloride, die zur schnelleren Erhärtung oder gegen das Gefrieren unter 0ºC bzw. durch chloriertes Wasser zugegeben werden, bewirken eine Aufhebung der Passivierung der Stahloberfläche. Die Korrosionsgefahr des Bewehrungseisens im chloridhaltigen Beton ist also durch die Zerstörung der Passivität oder Verhinderung der Passivierung des Metalls begründet. Diese Aufhebung erfolgt meist lokal, oft wird dies durch geringfügige Strukturunterschiede der Passivschicht bestimmt. Durch die kleinen anodischen und die großen katodischen Flächen des passiven Metalls wird eine Passiv-Aktivzelle mit einer Potentialdifferenz von 0,5 V und mehr gebildet.
Uhlig beschreibt in [/3/,78], daß "... Die hohen Stromdichten an den Anoden ... hohe Geschwindigkeiten des Metallangriffes bewirken, wobei die unmittelbar die Anoden umgebende Metallfläche katodisch geschützt wird."

Es kommt zu Lochfraß : Fe ---> Fe2+ + 2e
An der katodischen Fläche: 02 + 2 H2O + 4e > 4 OH
Fe + H2O + 1/2 O2 --> Fe(OH)2

In [/3/,96] steht dazu weiter: " Das Eisen(II)-hydroxid bildet eine diffusionshemmende Schicht an der Eisenoberfläche, durch den an der Reaktion beteiligte Sauerstoff diffundieren muss. Der pH-Wert von gesättigter Fe(OH)2-Lösung beträgt ca. 9,5, so dass die Eisenoberfläche, die in belüftetem reinem Wasser korrodiert wird, immer alkalisch reagiert. ... An der äußersten, der Elektrolytlösungen zugewandten Seite der Oxidschicht setzt der gelöste Sauerstoff Eisen(II)-oxid zu wasserhaltigem Eisen(III)-oxid oder Eisen(III)-hydoxid um:

Fe . H2O + 1/2 H2O + 1/2 O2 ---> Fe(OH)3 bzw. 1/2 (Fe2O3 . 3 H2O) ..."

Das wasserhaltige Eisen(III)-oxid wird als Rost bezeichnet. Die Rostschicht besteht aus 3 Schichten. Das magnetische wasserhaltige Eisen(II)-Eisen(III)-oxid, Fe2O4 . n H2O bildet die schwarze Zwischenschicht zwischen FeOH und Fe2O3. Durch die Volumenvergrößerung am Bewehrungsstahl, kommt es zum "Aufblühen" und die Betonschicht wird aufgerissen bzw. platzt weg. Damit ist eine Korrosion der Stahlfläche gegeben und die Zerstörung des Betons geht unter dem Gesichtspunkt der eigenen Korrosion durch chemische Reaktionen und durch Spannungsbildung, die durch die Volumenvergrößerung des Stahls während der Korrosion auftritt, weiter.

Betonkorrosion an Balkon
Nachtrag: Durch eine fehlende Abtropfkante konnte immer Wasser in die Betonkante gelangen. Absprengung durch die Volumenzunahme des Bewährungseisens. (Vinnitza 2010)

Seite: 1  2  3  4   5   6 7  8  9  10  11


 © Bauratgeber  |  Marktplatz der Bauideen  |  Sanierungskosten  |  Bauökonomie   |  Datenschutzerklärung  |  Impressum | 08/2018   IB-Rauch