ib-rauch.de

Altbausanierung  Bauphysik | Feuchteschutz | Holzbau | Konstruktion | Baublog | Baulexikon | Elektrophysik - BücherImpressum

Elektrophysikalische bzw. elektrokinetische Verfahren

Gerade bei Altbauten ist die Sanierung von feuchten Wänden ein Problem. In vielen Fällen geht man von einer "aufsteigenden Feuchtigkeit" aus und unterschätzt dabei die hygroskopische Eigenschaft der Salze sowie das Austauen an der kühleren Wandoberfläche. Zur Reduzierung des Feuchtigkeitseintrages in das Mauerwerk gibt es verschiedene Verfahren. In diesem Beitrag wird sich nur auf die elektrokinetischen Verfahren beschränkt.

1.Die Ursachen eines feuchten Mauerwerkes

Die einzelnen Formen der Durchfeuchtung sollen hier nur stark vereinfacht benannt werden. Am häufigsten erfolgt der Transport von Wasser durch Sickerströmung. Unter hydrostatischem Druck dringt das Wasser in flüssiger Form in die ca. 1 mm großen Poren ein. Ebenfalls in flüssiger Form wird das Wasser durch die kapillare Saugkraft entgegen der Schwerkraft nach oben transportiert. Je enger die Kapillare ist, so höher kann das Wasser aufsteigen. Diese theoretisch unbegrenzte Höhe wird allerdings durch die Verdunstung begrenzt und es stellt sich ein Gleichgewicht ein. Kapillar brechende und verdunstungsoffene Wandflächen verhindern im Wesentlichen eine zu starke Durchfeuchtung. Ein weiterer Wassertransport erfolgt durch die Dampfdiffusion. Vereinfacht werden die Oberflächen der Poren mit Wasserdampf gesättigt und die Poren mit Wasser gefüllt. Jetzt kann das Wasser auch die nächsten Poren ausfüllen.

Bei jedem Mauerwerk gibt es einen Gleichgewichtszustand für die Durchfeuchtungshöhe - je nach kapillarer Leistungsfähigkeit (maximaler Steighöhe, Sauggeschwindigkeit) und Verdunstung. Zwischen den beiden Größen, Wasseraufnahme und Wasserabgabe ist ein günstiges Verhältnis anzustreben, das beschreibt auch das Prinzip der Trocknung. Es wird die Wasseraufnahme reduziert oder die Wasserabgabe erhöht beziehungsweise beides zusammen.

2. Prinzip der elektrochemischen Entsalzung und Reduzierung des kapillaren Wassertransportes

Diese Verfahren zur Mauertrockenlegung sind bis heute äußerst umstritten. Obwohl das theoretische Prinzip bekannt ist, steht der Verwirklichung häufig die praktische Durchführbarkeit entgegen.

Bewegt sich Wasser durch eine Kapillare, wird an der Kapillarwand eine diffuse elektrische Doppelschicht aufgebaut. Durch den Wassertransport wird ein Teil der Ladungen mitgerissen. Dabei bildet sich ein Potenzial aus, das als Strömungspotenzial bezeichnet wird. [1] Bei einer gemauerten Wand ist das Potenzial an der Wandoberfläche genauer in der oberflächennahen Schicht am größten und im Wandinneren schwächer. Das Potenzial wird vom Versalzungsgrad weitgehend mitbestimmt. Es handelt sich also um elektrochemische Potenziale. Es finden elektrolytische Vorgänge in der Wand statt, die deshalb für die Dissoziierung (Spaltung in Anion und Kation) eine Spannung benötigen. Es ist richtig benannt eine Elektrolyse. In der Praxis spricht man von einer Osmose. [2] Es kann bisher nicht zweifelsfrei ausgeschlossen werden, ob durch die angeregte Ionenwanderung nicht auch Ca- und Si-Ionen zur Elektrode wandern und es so langfristig zu einer Verdürrung des Mauermörtels kommt. [2]
"Bei günstigen Verhältnissen von Porenradius zur Dicke der Doppelschicht wird der Wassertransport erheblich vergrößert, doch auch nur in feinporigen Systemen. Die übliche Doppelschichtdicke liegen bei einigen 10-9 m, die üblichen Porengrößen bei 6-10-6 m. Überschreitet die elektrische Doppelschichtdicke einen kritischen Wert x, dann überlappen sich die Doppelschichten und der Wassertransport behindert sich gegenseitig.
Der häufigste Porenradius im Zementmörtel liegt bei etwa 100 nm. Daran ist zu erkennen, dass eine rein elektrokinetische Trocknung sich nur auf einen kleinen Teil des Porensystems beschränken kann. Die Porosität von Ziegel schwankt in noch viel größeren Bereichen. Daher ist es durchaus erklärlich, dass eine entsprechende Trocknungsanlage bei einem Objekt funktioniert und bei einem anderen (aus anderem Ziegelmaterial) versagt.
"[3]

Es sind mindestens 4 verschiedene Mechanismen des Ionen- und Wassertransportes in porösen Systemen wirksam, die mehr oder weniger verstärken oder auch ausschließen.
Während beim Transport die Richtung der Ionen und Elektronen durch die Ladung bestimmt wird, treten beim Wassertransport Probleme auf, da nicht alle Mechanismen gleichzeitig wirken müssen. Der Wassertransport in folge der unterschiedlichen Hydrationszahlen erfolgt meistens in Richtung Kathode, da Kationen stärker hydratisiert sind als Anionen. Größere Salzionen zum Beispiel Ca(OH)2 schieben auf ihrem Weg zur Elektrode (Anode) das in den feien Poren befindliche Wasser vor sich her (Bulldozer-Effekt). Dies ist abhängig vom Durchfeuchtungsgrad und der Porenradienverteilung, wobei der Effekt in großen Poren nicht mehr wirkt. Weiterhin hängt die Richtung des Wassertransportes von der Polarität der Doppelschicht und dem damit verbundenen Vorzeichen des Zeta-Potenzials ab. [3]

Unter Laborbedingungen an einer überschaubaren Probe kann der Prozess der Elektromigration nachgewiesen werden. Das heißt, Wasserbewegungen können durch von außen aufgeprägte elektrische Felder initiiert werden, wenn die erforderlichen Bedingungen eingehalten werden. Allerdings können unter diesen Bedingungen gewonnene Erkenntnisse der Elektrophysik beziehungsweise der Elektrochemie nicht ohne weiteres auf die Bedingungen eines Bauwerkes übertragen werden. [4] Bei Untersuchungen zur elektroosmotischen Permeabilität von Mauerwerksbaustoffen wurden darüber hinaus Versuche an Ziegel/Mörtel-Verbundkörpern durchgeführt. Dabei wurde festgestellt, dass "die elektroosmotische Permeabilität von Kalkmörteln im Gegensatz zu Ziegelbaustoffen ein negatives Vorzeichen besitzt, das heißt, der Flüssigkeitsstrom in entgegen gesetzter Richtung verläuft. Diese Tatsache könnte sich unter Umständen als ein Hindernis für den erfolgreichen Einsatz elektrophysikalischer Verfahren herausstellen." [5]
Elektroosmotische Vorgänge im Mauerwerk sind kaum überschaubar, um gerichtete Feuchtetransporte zu bewirken. Insofern sind elektroosmotische Verfahren (Wassertransport in porösem Substrat) kein taugliches Prinzip zur Entfeuchtung von Mauerwerk. [1] Ein wesentliches Problem bei der praktischen Durchführbarkeit ist die mangelnde Resistenz der Elektroden wegen der Mauersalze [1], was unter anderem auch die Effizienz und Dauerhaftigkeit Funktionsfähigkeit beeinflusst. Die Wirksamkeit einer solchen elektrophysikalischen Anlage kann im Laufe der Zeit durch die Änderungen der o. g. Einflussfaktoren beeinträchtigt werden. Daher ist die Wirkung bei diesen Anlagen ständig durch Messung der Feuchtigkeit und der Zustand der Elektroden zu kontrollieren.

Wie bereits genannt, lässt sich nicht jedes Mauerwerk mit diesem Verfahren trocknen. Daher sind gründliche Voruntersuchungen erforderlich. Der Grad der Abtrocknung ist weitestgehend vom Stromfluss abhängig. Ist dieser kleiner als etwa 10 mA je Quadratmeter Mauerwerkquerschnitt, so ist mit keiner erfolgreichen Trocknung zu rechnen. Auch bei wesentlich höherer Stromdichte kann ein feuchtes Mauerwerk mit 10 % (Masse) nicht auf Werte von 2-3 % (Masse) getrocknet werden. Es verbleibt eine Restfeuchte, die für eine Nutzungskonzeption zu hoch ist. [6]

Seite:   1   2  3 


Diese Seite merken:




 ©  Altbausanierung | BaulexikonBauideenDownloadE-Mail | 10/2005  

079